Seamless stainless steel tubing is found throughout aircraft hydraulic systems. It can be bent to shape much more easily than steel piping, withstand higher pressures, and connect more securely with proper hose fittings. Because a hose is only as good as the connection, it is critical to use high quality tubing or hose and fittings to foster a reliable seal. This is why aerospace hydraulic fittings of AS9100C and Nadcap quality are used in a wide range of industries. Components that meet these rigid requirements are used by OEMs and maintenance crews in industries such as civil aviation, aerospace and defense, industrial, as well as in construction, manufacturing, and commercial equipment. This blog will explain aerospace fittings, their types, and important considerations to make.

Unlike steel pipe, segments of steel tubing are usually attached with either flared or flareless fittings. These are the two main types of fittings. Flared fittings provide significant design and performance advantages over pipe fittings and can be used in both thin- and medium-wall tubing. In a flared fitting, the tubing is flared in preparation to install and secure the seal. It is made up of a sleeve and a nut, with the nut fitted and tightened over the sleeve. The nut draws the sleeve and flared tubing securely into a cone shaped male fitting to facilitate a seal. The sleeve also serves as a support to alleviate vibration at the flare, distributing the energy over a wider area.

As tube, hose, and fitting installations are used in critical applications such as aircraft, military equipment, heavy machinery, cranes, earth-moving equipment, and many other industrial sectors, the appropriate connection and torque are pivotal. Metal-to-metal contact between the fitting and flare is necessary to provide a reliable seal. For this reason, you should never apply pipe compound or sealing tape to the faces of the fitting or flare. It is also important to ensure the assembly is in alignment before applying the designated torque to the fittings.

The other type of fitting, flareless fittings, are used in medium- to high-pressure applications. These comprise a nut, single or double ferrule, and the fitting body. The nut and ferrules slide over a tube with an outer diameter that matches the inner diameter of the receiving fitting. As the nut is tightened to the appropriate torque, the ferrule is compressed against the tube, providing a seal. This is why flareless fittings are also known as compression fittings. One type of flareless fitting is the Military Standard (MS) flareless fitting. MS fittings are used in high pressure hydraulic systems (greater than 3,000 psi) in areas that will experience rigorous vibration of inconsistent pressure.

Additionally, O-Ring Boss (ORB) fittings are a type of fitting used for leak-tight connections. These fittings are very popular among aerospace equipment manufacturers and typically consist of a 90 durometer nitrile o-ring. There are two types of o-ring boss fittings: SAE straight-thread parts and face seal parts. Regardless of what type of fitting or fluid system components you are in need of, ASAP NSN Hub can find what you are looking for and get it to you quickly.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you source all types of fittings and aerospace standard parts and deliver them with some of the industry’s best lead times. We’re always available and ready to help you find all the parts and equipment you need, 24/7-365. For a quick and competitive quote, call us at +1-920-785-6790 or email us at Our team of dedicated account managers is standing by and will reach out to you in 15 minutes or less.

Read more »

The kinetic energy of a jet airplane is extremely high due to the combination of the aircraft’s weight and speed. This energy is very difficult to eliminate because a jet aircraft has low drag when the nose wheel is on the ground, and the engines continue to produce forward thrust even when the power is idle. While brakes can normally suffice, there is need for a supplementary method of slowing. This is where thrust reversers come in. A thrust reverser is a device in the engine exhaust system that essentially reverses the path of exhaust gas flow. The flow is not able to reverse 180 degrees, but rather the final path of the gases is diverted 45 degrees from straight ahead. This, coupled with the losses in the reverse flow paths, results in an engine efficiency of about 50 percent, helping the brakes bring the aircraft to a stop.

A normal jet engine will have one of two types of thrust reverser: target or cascade. A target reverser features basic clamshell doors that open from the stowed position at the engine tailpipe. These doors swivel open, blocking and redirecting the outward flow of gases. Cascade reversers are markedly more complex. These are found on turbofan engines and are designed to reverse only the fan air. When activated, cascade reverser parts such as doors in the shroud open and block the airstream’s normal path, redirecting it forward to help slow the aircraft.

On most aircraft configurations, reverse thrust is applied with the thrust lever at idle by pulling up the reverse lever to a detent, which holds the lever in position. This leaves the engine at idle RPM during the slowing process. Reverse thrust is more effective at high speed than at low speed, for two reasons. The first is that the net amount of reverse thrust increases with speed, and the second is that the reverse power is greater at high speeds because of the engine’s increased work rate. In other terms, the aircraft’s kinetic energy is being displaced at higher rates when operating at higher power.

The proper time to apply reverse thrust often depends on the type or model of aircraft. Some aircraft tend to pitch nose up when reverse thrust is applied on landing, which can cause the aircraft to temporarily leave ground again. With aircraft of this type, the pilot must ensure that the aircraft is on the ground with the nose wheel firmly down before implementing reverse thrust. Specific procedures regarding operation of thrust reversers will be included in the FAA-approved AFM of an aircraft.

Thrust reversers on jet aircraft differ greatly from those on propeller aircraft. Idle reverse thrust on a propeller produces 60 percent of the reverse thrust available at full power, making it very effective when at this setting. Jet aircraft, on the other hand, produce very little reverse thrust at idle reverse. In a jet aircraft, the pilot must use full power reverse as soon as the plane is fully grounded and landing can be completed within the available runway distance. Accidental deployment of thrust reversers while airborne is a serious emergency, so reverser systems have multiple built-in lock systems. One system prevents the reversers from operating while airborne, and another to prevent operation when the thrust levers are improperly positioned.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find all the thrust reverser parts for the aerospace, civil aviation, and defense industries. In addition to this, our inventory of over 6 billion items features wheel brake parts, turbofan engine parts, aircraft propeller parts, and important components for aircraft engine exhaust systems. For a quick and competitive quote, email us at or call us at 1-920-785-6790.

Read more »

As one moves upward in altitude, the pressure of air decreases, making it harder for humans to breathe. Mount Everest’s peak lies at 29,000 feet, and oxygen levels have been described similar to breathing through a straw while on a treadmill. Thus, at 30,000 feet where many aircraft fly, it is a technological marvel that they are able to provide oxygen pressure that allows for safe and comfortable breathing for passengers. This is due to a complex aircraft cabin pressurization system which has been designed and improved upon by countless aircraft manufacturers over the history of aviation.

While many solutions for pressurized oxygen have existed over the years, the current method of providing pressurized air for the cabin of an aircraft is by using bleed air and compressors. Within the air compressor of the engine, air from the atmosphere is directed into spinning blades which heat up and compress air before it continues through the system. While much of this air is directed to the combustion chamber for fuel ignition and propulsion generation, some of the hot, compressed air is also used for other purposes. This clean and pressurized air is referred to as “bleed air” and it may be used for cabin pressurization, deicing operations, pneumatic pumps, and aiding engine starter motors.

For cabin pressurization and many other bleed air functions, the air must first be cooled down with the use of intercoolers which shed heat to ambient air. Air continues to cool with the use of air packs within the system that act as a refrigeration unit. Air is compressed to heat it, and another intercooler filters out the heat and expels it from the aircraft. The cooled air then expands within an expansion turbine before being mixed with recirculated air to be distributed throughout the airplane fuselage. Automatic outflow valves with pressure sensors regulate the amount of pressure to maintain safe levels. These valves are also used to cycle out old air that is vented from the aircraft.

Outside of preflight checks to ensure the functionality of the automatic pressure control system, pilots do not control pressurization during the flight operation. Nevertheless, in the case of a malfunction or emergency pilots can take control of automated functions and can manually adjust the outflow valve positioning. During ground support operations in between flights, testing equipment is used to detect pressure leaks, inoperable equipment, or any other issues that warrant immediate attention for safety measures.

At an altitude of 10,000 feet, pressure of the atmosphere is viable for safe breathing conditions, and this is the altitude that planes will fly at in an emergency situation caused by depressurization of the cabin. Nevertheless, aircraft cannot permanently fly at this ideal altitude for a number of reasons. As many mountain ranges and terrain surpass elevations of 10,000 feet, it would be unsafe for aircraft to fly at such a level, and harsher weather conditions often remain at such an altitude as well. Aircraft engines are also designed for optimal operation at much higher altitudes, thus it would be very inefficient to stay at 10,000 feet.

When it comes time to begin sourcing the turbofan engine parts and aircraft components that you need for your next project or operation, ASAP NSN Hub has you covered with everything you are searching for. ASAP NSN Hub is owned and operated by ASAP Semiconductor, and we can help you find the aerospace components that you need, new or obsolete. For a quick and competitive quote, email us at or call us at +1-920-785-6790.

Read more »

When working in the industrial industry, particularly in the manufacturing sector, you must handle various types of machinery and the parts that go along with it. There can be a variety of different nuts, bolts, and screws that pertain exclusively to certain parts. The hydraulic system is a perfect example of how complex the work is, as there are many different types of thread forms and sealing methods involved. Thread forms can be particularly difficult as they not immediately distinguishable from one another, thus making it difficult when doing modifications or repairs. To help ease your work, read the article below on how to use the process of elimination to identify a hydraulic hose fitting.

The first step is to determine the type of fitting. There are two types of hydraulic hose fittings: permanent and reusable. The former includes crimped hydraulic fittings and are mostly used in the fluid power industry because they are easier to attach than if you use reusable fittings. To connect a crimped fitting, you will need swaging or crimping materials. These fittings are squeezed onto the hose at assembly and are discarded when the hose assembly fails. With the latter, they are not commonly used as most people in the industry consider them much too old and more expensive. They are, however, easily identifiable because they can fit into a hose during assembly with just the use of a vise and a wrench.

After you’ve identified whether your fitting is permanent or reusable, you next need to identify the port and and connectors in the system. For example, NPT/NPTF can go with the 37° Flare and the BSPT (JIS-PT) goes with the 30° Flare (Metric). Following this, you would next identify the sealing method to determine if the hydraulic fitting is an O-ring, a mated angle or a tapered thread. From this point, you would then need to observe the fitting designs and use a seat gauge to determine seat angle.

The very last step in the process would be to measure the thread diameter of the largest point  with a caliper. Refer to a thread gauge to determine the number of threads per inch. You can ensure an accurate reading when you compare gauge and coupling threads against a lit background.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find all the unique parts for the aerospace, civil aviation, and defense industries. For a quick and competitive quote, email us at or call us at +1-920-785-6790.

Read more »

If you look at the wings of an aircraft, sometimes you will see small thin wicks protruding from the outermost edge. These are called the static wicks of the aircraft, which are sometimes known as the static discharge wicks. These are a high electrical release device that have a lower corona voltage than that of the surrounding aircraft vessel. These static aircraft wicks were designed to dissipate the static electricity that builds up during each flight.

Aircraft wicks serve a very important purpose which is why it’s just as important to check them often and maintain them. But it’s also crucial that you understand more about the wicks themselves so that you can appreciate why it’s necessary to maintain them. When planes fly through snow, fog, dust, or ash, they are flying through uncharged particles. When negative charges attach to the airframe and positive charges deflect the particles build up and are eventually discharged at places along the airframe where the wicks are stationed at. Were it not for these wicks, there would be audio disturbances, potential loss of communication and weak radio transmissions.

As important as they are, static wicks can still be purchased without authorization of the FAA. There are some planes that can fly without them entirely. This is usually because the planes that do not use them tend not to fly through such uncharged particles. However it is always better to come prepared, which is why major commercial airlines will always carry and maintain static wicks. If you are interested in purchasing electronic controller parts, aviation plug connectors or other items, contact the team today.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find all the unique parts for the aerospace, civil aviation, and defense industries. For a quick and competitive quote, email us at or call us at 1-920-785-6790.

Read more »

An aircraft wick, commonly known as static wicks or static discharge wicks, is a high electrical resistance device with a lower corona voltage than the surrounding aircraft structure. Physically, they look like long thin extensions that are located outboard trailing edges of the wings. Their purpose is to dissipate the static electricity that can accumulate during flight. Because they serve an important purpose, it’s extra crucial to take good care of the wicks.

To elaborate more on this, you have to first understand what exactly the aircraft wick is and what it does. As you fly through areas of uncharged particles, which can exist in the atmosphere as rain, snow, fog, dust or ash, positive charges deflect and negative charges attach to the airframe, building up and eventually discharging at certain points of the airframe where the static wicks are generally attached. If these wicks were not in place, there would be potential for audio disturbances, weak radio transmissions and even complete loss of communication. Other possible indications of static discharge include erratic instrument readouts, erroneous magnetic compass readings and a phenomenon called St. Elmo’s Fire, where the static discharge is visible.

The interesting thing about static wicks is that they can be purchased with or without FAA approval. Some planes can even fly without them. While they serve a very important purpose of dissipating static particles, some planes get on without them because these planes simply do not fly through such heavy amounts of particles (ie fog, snow, rain, etc.). However, like in most examples, it is always better to err on the side of caution. All commercial planes will have some form of static wick in the case that the do have a need for them in flight.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find all the unique parts for the aerospace, civil aviation, and defense industries. For a quick and competitive quote, email us at or call us at 1-920-785-6790.

Read more »

The rudder is one of the most important control surfaces used to direct a ship, boat, submarine, aircraft, or any other vehicle that moves through air or water. The rudder is an important component in ensuring safe flight, preventing unwanted roll and yaw as well as uncontrolled banking. Mastering rudder control will make you a better pilot and give you the tools to control your aircraft through inclement conditions.

The rudder is flight control surface mounted on an aircraft’s vertical stabilizer or fin that regulates rotation along the vertical axis of an aircraft. This vertical movement is referred to as yaw, and controlling yaw is the primary purpose of the rudder. This is unlike a boat, where the rudder is used to steer the vessel.

In the majority of aircraft, the rudder is controlled by rudder pedals on the flight deck which are connected to the rudder itself. Force applied on a rudder pedal will cause a corresponding movement of the rudder in the same direction. Therefore, pressing the right rudder pedal will cause the rudder to deflect to the right. This will then cause the aircraft’s vertical axis to rotate and move the nose of the aircraft rightward. This can cause a great deal of stress on a rudder, so larger and high performance aircraft will be fitted with hydraulic actuators to help the rudder withstand these extreme conditions.

As aircraft speed increases, so too will rudder performance. At lower speeds, significant rudder input is required to yield noticeable results. Inversely, at higher speeds smaller rudder movements have significant effect. This can create problems, so many sophisticated aircraft will limit their rudder’s movement when the aircraft exceeds maneuvering speed to prevent sudden changes in direction that cause serious structural damage to the aircraft.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find all the rudder components for the aerospace, civil aviation, and defense industries. For a quick and competitive quote, call us at 1-920-785-6790 or send us an email at

Read more »

If you have been on an aircraft flight before, you may know that passenger cabins can get very chilly or even very stuffy and hot depending on the flight. With one simple twist of the overhead fan, air conditioning (A/C) can make your ride much more of a pleasant experience. But how does this seemingly simple solution to our flight comfort actually work?

Aircraft air conditioning is supplied by air that is processed through two packs that work to regulate airflow and temperature as required. Despite there being many types of aircraft, the air conditioning system principles and operations remain the same. A/C packs are often located near the main landing gear of the plane on the left and right wings and remove excessive heat using bleed air that enters the packs from the aircraft bleed air system, supplying air to cabins at the desired temperature. The A/C system is based on an ACM (Air Cycle Machine) cooling device and is often called the “Pack”, or air conditioning package.

The aircraft pneumatic system is supplied by bleed air tap-offs on each engine compressor section and supplies the air cycle conditioning system. The bleed air is then directed from the pneumatic manifold into the primary heat exchanger of the packs. This bleed air is cycled through the primary exchanger where ram air removes some of the heat before it is compressed and enters the secondary heat exchanger to continue the cooling process. Cross flow of ram air continues to remove heat before the air moves into the ACM turbine inlet.

After leaving the secondary heat exchanger, bleed air moves through the hot side of the reheater for a first time before being cooled down using colder air from the condenser. The bleed air temperature is increased as it passes through the reheater a second time before moving into the turbine section. By increasing the temperature in the pack, the efficiency of the turbine is also increased. The ACM works to decrease the air temperature by expanding it through a turbine.

As the air leaves the turbine, it passes through the colder side of the condenser, decreasing the temperature of the air to a point below the dew point which turns the vapor into a liquid. Moving from the turbine into the water extractor, moisture is removed and goes to the water spray nozzles which sprays the water into the ram air duct. This works to cool the ram air stream, increasing the cooling efficiency by evaporation.

The passenger cabins are supplied with conditioned air from the mix manifold as the air moves through rise ducts and the side walls before exiting through the overhead distribution duct. The flight cabin is given conditioned air from the left pack and mix manifold, or the right pack if the left is not functioning. 50 percent of the cabin air is recycled for ventilation purposes by recirculation systems that use two fans to move air from the passenger compartment into the mix manifold.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find the aircraft air conditioning system parts you need and more, new or obsolete. For a quick and competitive quote, email us at or call us at +1-920-785-6790.

Read more »

An aircraft heating system is integral for safe operation of an aircraft. In the duration of its flight cycle, an aircraft will encounter volatile temperature changes and a heating system can help ensure all aircraft components maintain their necessary temperature for efficient and reliable operation. Two heating systems that are frequently utilized in aviation are exhaust heaters and combustion heaters. The systems share one similarity— both utilize the heating of ambient air, or ram air. Let’s take a look at how these heater systems work.

Exhaust heaters are most commonly seen on smaller, single-engine aircraft. The unit is installed around part of the engine’s exhaust system and is sometimes referred to as an exhaust shroud heater. An exhaust manifold delivers warm exhaust into the metal shroud. Ram air is also brought into the shroud from outside of the aircraft. The air is warmed by the exhaust, then routed through a heater valve to the cabin. In some models, the air is routed to the carburetor as well. Exhaust is then transferred to an outlet.

This type of heater doesn’t need an independent electrical system or engine power to operate, making it efficient in a small aircraft. However, this system is hazardous in the event of failures or defects within its hardware— a small crack in the shroud or exhaust manifold has the potential to leak lethal levels of carbon monoxide into the cabin. This system requires rigorous maintenance efforts to keep it operating safely.

Combustion heaters are seen on various aircraft sizes. A combustion system operates independently from the engine, and only relies on engine fuel from the main fuel system. The system incorporates a ventilating air system, fuel system, and ignition system to heat various components of an aircraft. In order to heat incoming air from the ventilating system, the combustion unit integrates an independent combustion system within a shroud in a heater unit, where fuel and air are mixed and ignited within an inner chamber.

Air intended for combustion is provided by a blower, which pulls air from outside the aircraft and ensures the air is pressurized to the correct specifications. Ram air is collected when the aircraft is grounded, through a ventilating air fan. The ram air is circulated around the combustion chamber and outer shroud, allowing it to heat through convection. Following this process, the heated air is then directed to the cabin. Exhaust from the same process is expelled from the aircraft.

A combustion unit is extremely versatile, which is why it is used on a variety of aircraft. Most are controlled and monitored by a pilot through a cabin heat switch and thermostat and incorporate various redundant safety features. These might include an overheat switch or duct limit.

As is recommended for any other aircraft system, it is important to follow aircraft manufacturer instructions and protocols in the maintenance of exhaust or combustion heaters.  Maintenance guidelines should specify intervals between maintenance and operational checks and should be stringently adhered to in order to ensure safe operation of an aircraft heating system.

At ASAP NSN Hub, owned and operated by ASAP Semiconductor, we can help you find the exhaust heating system parts, spark plug parts, and aircraft heating systems parts you’re looking for, new or obsolete. For a quick and competitive quote, email us at or call us at +1-920-785-6790.

Read more »

Recent Twitter Posts

 Semiconductor's Certifications and Memberships

We’Re Glad You Visited today.

Please Consider Us the Next Time You’re Searching for Competitive Prices On NSN Parts.

Request for Quote